• unlimited access with print and download
    $ 37 00
  • read full document, no print or download, expires after 72 hours
    $ 4 99
More info
Unlimited access including download and printing, plus availability for reading and annotating in your in your Udini library.
  • Access to this article in your Udini library for 72 hours from purchase.
  • The article will not be available for download or print.
  • Upgrade to the full version of this document at a reduced price.
  • Your trial access payment is credited when purchasing the full version.
Buy
Continue searching

Innovative connection details for full-depth precast bridge deck panels for use on prestressed concrete girders

Dissertation
Author: Stephen Price
Abstract:
This research evaluates the use of precast, prestressed bridge deck panels on new and existing precast, prestressed concrete girders. The evaluation focuses on the ease of construction and the ability of the system to develop composite action with the concrete girders. A system developed by the Connecticut Department of Transportation (CDOT) and Precast/Prestressed Concrete Institute New England Region (PCINER) was chosen for testing from available systems because it is representative of the current geometry of precast bridge deck panels. The CDOT system was evaluated in a series of large scale tests in which the panels were placed on a 40 ft prestressed concrete girder and subjected to three point loading. The CDOT system is compared to a new system developed as part of the research program. The new system addresses durability and ease of construction issues that are problematic with current joint details. The strength and geometry of both the current and new joint details are evaluated and compared in a series of direct shear tests. A final, large scale specimen was designed, constructed, and loaded to evaluate the new system. It was concluded that the behavior of the new system is comparable to that of the CDOT system. In addition, the new system is easy to construct and minimizes deck penetrations, thereby enhancing durability. This research has the potential to impact the way in which the aging highway system is rehabilitated and replaced by reducing the associated time and costs of construction while decreasing disruption to the traveling public.

TABLE OF CONTENTS

Page LIST OF TABLES ........................................................................................................... xiii

LIST OF FIGURES .......................................................................................................... xv

ABSTRACT ................................................................................................................... xxiii

CHAPTER 1:

INTRODUCTION ...................................................................................... 1

1.1. Background ...............................................................................................................1

1.2. Full-Depth Systems in Practice ................................................................................2

1.2.1. New England Region System ............................................................................2

1.2.2. NUDECK System ..............................................................................................3

1.2.3. Inverset TM System ..............................................................................................4

1.2.4. Effideck TM System .............................................................................................5

1.3. Research on Full-Depth Systems ..............................................................................6

1.3.1. University of Illinois at Chicago ........................................................................6

1.3.2. Virginia Tech ...................................................................................................13

1.3.3. University of Nebraska-Lincoln ......................................................................16

1.3.4. The George Washington University ................................................................19

1.3.5. University of Wisconsin-Madison ...................................................................21

1.3.6. Purdue University ............................................................................................21

1.3.7. University of British Columbia .......................................................................22

v

Page 1.4. Limitations of Current Approaches ........................................................................23

1.5. Objectives and Scope ..............................................................................................24

CHAPTER 2:

NEW ENGLAND SYSTEM ON CONCRETE GIRDERS ..................... 26

2.1. Introduction .............................................................................................................26

2.2. Specimen Design ....................................................................................................26

2.2.1. Girders .............................................................................................................27

2.2.2. Precast panels ...................................................................................................27

2.2.3. Test variables ...................................................................................................29

2.3. Construction ............................................................................................................29

2.3.1. Girders .............................................................................................................29

2.3.2. Precast deck panels ..........................................................................................31

2.3.3. System ..............................................................................................................32

2.4. Materials .................................................................................................................33

2.4.1. Concrete ...........................................................................................................34

2.4.2. Reinforcing Steel .............................................................................................35

2.4.3. Shear Studs ......................................................................................................36

2.4.4. Epoxy ...............................................................................................................37

2.5. Test Setup ...............................................................................................................37

2.5.1. Test protocol ....................................................................................................41

2.6. Test Results .............................................................................................................41

2.6.1. Specimen 4-C ...................................................................................................42

2.6.2. Specimen 6-C ...................................................................................................46

2.6.3. Specimen 4/6-P ................................................................................................53

vi

Page 2.6.3.1. Test 1 ........................................................................................................53

2.6.3.2. Test 2 ........................................................................................................56

2.7. Analysis of Results .................................................................................................59

2.7.1. Specimen 4-C ...................................................................................................62

2.7.2. Specimen 6-C ...................................................................................................63

2.7.3. Specimen 4/6-P, Test 1 (#6 studs) ...................................................................64

2.7.4. Specimen 4/6-P, Test 2 (#4 studs) ...................................................................66

2.7.5. Design Equations .............................................................................................68

2.8. Conclusions .............................................................................................................69

CHAPTER 3:

PANEL-TO-GIRDER CONNECTION .................................................... 71

3.1. Introduction .............................................................................................................71

3.2. Specimen Design ....................................................................................................71

3.2.1. Girder section ...................................................................................................71

3.2.2. Panel section ....................................................................................................75

3.2.3. Test variables ...................................................................................................76

3.3. Specimen Construction ...........................................................................................78

3.3.1. Girder section ...................................................................................................78

3.3.2. Panel sections ...................................................................................................79

3.3.3. Specimens ........................................................................................................80

3.4. Materials .................................................................................................................81

3.4.1. Concrete ...........................................................................................................81

3.4.2. Reinforcing Steel .............................................................................................83

3.4.3. Shear studs .......................................................................................................83

vii

Page 3.5. Test Setup ...............................................................................................................85

3.5.1. Test protocol ....................................................................................................87

3.6. Results .....................................................................................................................88

3.6.1. 1 ft Specimens ..................................................................................................88

3.6.1.1. Specimen 1-4000-6-4 ................................................................................88

3.6.1.2. Specimen 1-4000-6-k-4 ............................................................................90

3.6.1.3. Specimen 1-4000-6-k-6 ............................................................................92

3.6.1.4. Specimen 1-4000-8-6 ................................................................................94

3.6.1.5. Specimen 1-4000-8-k-6 ............................................................................95

3.6.1.6. Specimen 1-8000-6-4 ................................................................................98

3.6.1.7. Specimen 1-8000-6-k-4 ..........................................................................100

3.6.1.8. Specimen 1-8000-6-6 ..............................................................................101

3.6.1.9. Specimen 1-8000-6-k-6 ..........................................................................103

3.6.1.10. Specimen 1-8000-6-k-4n ......................................................................106

3.6.2. 2 ft Specimens ................................................................................................108

3.6.2.1. Specimen 2-4000-6-4 ..............................................................................108

3.6.2.2. Specimen 2-4000-6-6 ..............................................................................110

3.6.2.3. Specimen 2-4000-6-k-4 ..........................................................................114

3.6.2.4. Specimen 2-4000-6-k-6 ..........................................................................115

3.6.2.5. Specimen 2-4000-6-k-6n ........................................................................117

3.6.2.6. Specimen 2-4000-8-6 ..............................................................................119

3.6.2.7. Specimen 2-4000-8-k-6 ..........................................................................122

3.6.2.8. Specimen 2-8000-6-k-6n ........................................................................124

viii

Page 3.6.2.9. Specimen 2-8000-6-k-6 ..........................................................................125

3.6.2.10. Specimen 2-6000-14-4 ..........................................................................127

3.6.2.11. Specimen 2-6000-14-6 ..........................................................................129

3.6.3. Results summary ............................................................................................131

3.7. Analysis of Results ...............................................................................................133

3.7.1. Stud diameter .................................................................................................133

3.7.2. Stud spacing ...................................................................................................136

3.7.3. Embedment ....................................................................................................137

3.7.4. Trough concrete ........................................................................................139

3.7.5. Trough detail ..................................................................................................140

3.7.6. Joint comparison ............................................................................................141

3.8. Conclusions ...........................................................................................................143

3.8.1. Bond strength .................................................................................................143

3.8.2. Confinement of trough concrete ....................................................................143

3.8.3. Concrete strength ...........................................................................................148

3.8.4. Stud Strength .................................................................................................152

3.9. Design Recommendations ....................................................................................152

CHAPTER 4:

PANEL-TO-PANEL CONNECTION .................................................... 153

4.1. Introduction ...........................................................................................................153

4.2. Specimen Design ..................................................................................................153

4.2.1. Joint Specimens .............................................................................................153

4.2.2. Test variables .................................................................................................155

4.3. Specimen Construction .........................................................................................156

ix

Page 4.3.1. Panel sections .................................................................................................156

4.3.2. Specimens ......................................................................................................157

4.4. Materials ...............................................................................................................159

4.4.1. Concrete .........................................................................................................159

4.4.2. Steel ...............................................................................................................160

4.4.3. Segmental Bridge Adhesive ..........................................................................161

4.5. Test Setup .............................................................................................................161

4.5.1. Test protocol ..................................................................................................163

4.6. Results ...................................................................................................................164

4.6.1. Specimen tests clamped at 8 in. .....................................................................164

4.6.2. Specimen tests clamped at 4 in. .....................................................................165

4.6.2.1. U-6-1 .......................................................................................................166

4.6.2.2. U-6-2 .......................................................................................................166

4.6.2.3. U-8-1 .......................................................................................................167

4.6.2.4. U-8-2 .......................................................................................................168

4.6.2.5. U-8-3 .......................................................................................................169

4.6.2.6. U-8-4 .......................................................................................................170

4.6.2.7. S-6-1 .......................................................................................................171

4.6.2.8. S-6-2 .......................................................................................................172

4.6.2.9. S-6-3 .......................................................................................................173

4.6.2.10. S-6-4 .....................................................................................................174

4.6.2.11. S-8-1 .....................................................................................................175

4.6.2.12. S-8-2 .....................................................................................................176

x

Page 4.6.2.13. C-0-1 .....................................................................................................177

4.6.2.14. C-0-2 .....................................................................................................178

4.6.2.15. C-0-3 .....................................................................................................179

4.6.3. Results summary ............................................................................................180

4.7. Analysis of Results ...............................................................................................181

4.7.1. Joint geometry ...............................................................................................181

4.7.2. Joint material .................................................................................................182

4.7.3. Shear Strength ................................................................................................183

4.8. Conclusions ...........................................................................................................186

4.9. Design Recommendation ......................................................................................187

CHAPTER 5:

FULL-DEPTH DECK SYSTEM ............................................................ 188

5.1. Introduction ...........................................................................................................188

5.2. Specimen Design ..................................................................................................188

5.2.1. Girders ...........................................................................................................189

5.2.2. Precast panels .................................................................................................190

5.2.3. Test variables .................................................................................................192

5.3. Construction ..........................................................................................................192

5.3.1. Girders ...........................................................................................................192

5.3.2. Precast deck panels ........................................................................................193

5.3.3. System ............................................................................................................196

5.4. Materials ...............................................................................................................199

5.4.1. Concrete .........................................................................................................199

5.4.2. Reinforcing Steel ...........................................................................................201

xi

Page 5.4.3. Shear Studs ....................................................................................................201

5.4.4. Segmental Bridge Adhesive ..........................................................................202

5.5. Test Setup .............................................................................................................203

5.5.1. Cyclic Load Test Setup ..................................................................................206

5.5.2. Shear Test Setup ............................................................................................206

5.5.3. Instrumentation ..............................................................................................207

5.5.4. Test protocol ..................................................................................................209

5.5.4.1. Cyclic Load Test .....................................................................................209

5.5.4.2. Shear Test ...............................................................................................210

5.6. Test Results ...........................................................................................................211

5.6.1. Cyclic Load Test ............................................................................................211

5.6.2. Shear Test ......................................................................................................213

5.6.2.1. Specimen G-1 .........................................................................................213

5.6.2.2. Specimen G-2 .........................................................................................217

5.7. Analysis of Results ...............................................................................................220

5.7.1. Cyclic Load Test ............................................................................................220

5.7.2. Shear Tests .....................................................................................................222

5.7.2.1. Specimen G-1 (#5 at 2 ft) .......................................................................222

5.7.2.2. Specimen G-2 (#4 at 2 ft) .......................................................................225

5.8. Conclusions ...........................................................................................................231

CHAPTER 6:

SUMMARY AND CONCLUSIONS ..................................................... 232

6.1. Introduction ...........................................................................................................232

6.2. New England System ............................................................................................233

xii

Page 6.3. Panel-to-Girder Connection ..................................................................................233

6.4. Panel-to-Panel Connection ...................................................................................234

6.5. Full-Depth Deck System .......................................................................................235

6.6. Design and Construction Recommendations ........................................................236

6.6.1. Girder Design .................................................................................................236

6.6.2. Panel Design ..................................................................................................237

6.6.3. Construction ...................................................................................................238

6.7. Future Research ....................................................................................................239

LIST OF REFERENCES ................................................................................................ 240

APPENDIX ..................................................................................................................... 244 VITA ................................................................................................................................251

xiii

LIST OF TABLES

Table Page 2.1: Specimen variables .................................................................................................. 29

2.2: Concrete mix proportions - Deck panels and SCC .................................................. 34

2.3: Concrete mix proportions - Girders ......................................................................... 35

2.4: Average cylinder strengths on day of specimen test ................................................ 35

2.5: Summary of certified mill tests ................................................................................ 35

2.6: Summary of results from tension tests ..................................................................... 37

2.7: Calculated horizontal shear force capacities ............................................................ 69

3.1: Test matrix ............................................................................................................... 77

3.2: Concrete mix proportions - Group 1 ........................................................................ 82

3.3: Concrete mix proportions - Group 2 ........................................................................ 82

3.4: Average cylinder strength on day of specimen test ................................................. 83

3.5: Shear stud strength ................................................................................................... 84

3.6: Test Results ............................................................................................................ 132

3.7: Average strengths at bond failure .......................................................................... 137

3.8: Values for Group 2 design ..................................................................................... 146

3.9: Group 2 design - simplified method ...................................................................... 148

3.10: Pryout loads ........................................................................................................... 150

3.11: Shear key capacity of 1 ft and 2 ft specimens ........................................................ 152

4.1: Test matrix ............................................................................................................. 155

4.2: Concrete mix proportions ...................................................................................... 160

4.3: Summary of maximum loads (clamped at 8 in.) .................................................... 165

4.4: Summary of results ................................................................................................ 181

xiv

4.5: Computed coefficients of , new joint .............................................................. 185

Table Page 4.6: Computed coefficients of , New England Joint .............................................. 186

5.1: Specimen variables. ............................................................................................... 192

5.2: Concrete mix proportions - Deck panels and Trough ............................................ 200

5.3: Concrete mix proportions - Girders ....................................................................... 200

5.4: Summary of certified mill tests .............................................................................. 202

5.5: Summary of results from tension tests ................................................................... 202

5.6: Test rates and loads ................................................................................................ 210

A.1: Test day concrete compressive strength .................................................................245

xv

LIST OF FIGURES

Figure Page 1.1: Typical full-depth precast bridge deck panel system

................................................ 2 1.2: Typical NUDECK panel (Fallaha et al. 2004)

.......................................................... 4 1.3: Typical Inverset TM unit (Fort Miller Co. 2008a)

...................................................... 5 1.4: Effideck TM system (Fort Miller Co. Inc. 2008b)

...................................................... 6 1.5: 1/4 scale specimens evaluated by Issa et al. (2000)

.................................................. 8 1.6: Small scale tests performed by Issa et al. (2003a)

.................................................... 9 1.7: Example of one pocket full scale push-off specimen used by Issa et al. (2003b)

11 1.8: Example of push-off test performed by Issa et al. (2006)

...................................... 12 1.9: Bridge specimen evaluated by Issa et al. (2007)

.................................................... 13 1.10: Push-off test setup (Menkulasi and Roberts-Wollmann 2005)

............................... 14 1.11: Shear stud system developed at Virginia Tech (Scholz et al. 2007)

....................... 15 1.12: Transverse joint geometries used by Sullivan (2007)

............................................. 15 1.13: Plan view of deck system (Yamane et al. 1998)

..................................................... 17 1.14: Sections A-A and B-B from Figure 1.13 (Yamane et al. 1998)

............................. 18 1.15: Deck panels proposed by Badie et al. (2006)

......................................................... 19 1.16: Transverse joint details proposed by Badie et al. (2006)

........................................ 20 2.1: Girder cross-section and reinforcement layout. ...................................................... 27

2.2: Panel dimensions and reinforcement details ........................................................... 28

2.3: Girder construction ................................................................................................. 30

2.4: Girder 4/6-P shear stud distribution ........................................................................ 31

2.5: First panel placement and haunch. .......................................................................... 32

2.6: Haunch formwork ................................................................................................... 33

2.7: #4 with Lenton terminator ...................................................................................... 36

xvi

Figure Page 2.8: Shear stud stress-strain relationship ........................................................................ 36

2.9: Roller and pin supports ........................................................................................... 38

2.10: Full-scale girder tests of existing system ................................................................ 38

2.11: First loading of Specimen 4/6-P ............................................................................. 39

2.12: Second loading of Specimen 4/6-P ......................................................................... 39

2.13: Location of external instrumentation on Specimens 4-C and 6-C .......................... 40

2.14: Location of external instrumentation on Specimen 4/6-P ...................................... 41

2.15: Load vs Midspan deflection – Specimen 4-C ......................................................... 42

2.16: South horizontal slip ............................................................................................... 43

2.17: North horizontal slip ............................................................................................... 44

2.18: Measured longitudinal strain in shear studs ............................................................ 45

2.19: Failure of Specimen 4-C ......................................................................................... 46

2.20: Load vs Midspan Deflection – Specimen 6-C ........................................................ 48

2.21: North horizontal slip – Specimen 6-C .................................................................... 49

2.22: South horizontal slip – Specimen 6-C .................................................................... 50

2.23: Measured strain in shear studs – Specimen 6-C ..................................................... 51

2.24: Load vs Midspan deflection for final loading to failure – Specimen 6-C .............. 51

2.25: Failure of Specimen 6-C ......................................................................................... 52

2.26: Load vs deflection – Specimen 4/6-P, Test 1 ......................................................... 54

2.27: North horizontal slip – Specimen 4/6-P, Test 1 ...................................................... 54

2.28: South horizontal slip – Specimen 4/6-P, Test 1 ...................................................... 55

2.29: Failure of Specimen 4/6-P, Test 1 .......................................................................... 56

2.30: Load vs deflection – Specimen 4/6-P, Test 2 ......................................................... 57

2.31: Horizontal slip – Specimen 4/6-P, Test 2 ............................................................... 58

2.32: Failure of Specimen 4/6-P, Test 2 .......................................................................... 59

2.33: Determining shear force at horizontal interface, full-composite ............................ 61

2.34: Determining shear force at horizontal interface, partial-composite ....................... 62

2.35: Specimen 4-C compared with computed load-deflection paths ............................. 63

2.36: Specimen 6-C compared with computed load-deflection paths ............................. 64

xvii

Figure Page 2.37: Specimen 4/6-P, Test 1, compared with computed load deflection paths .............. 66

2.38: Specimen 4-P, Test 2, compared with computed load-deflection paths ................. 67

3.1: Rebar layout for Group 1 specimens ...................................................................... 73

3.2: Rebar layout for Group 2 specimens ...................................................................... 74

3.3: Shear key dimensions ............................................................................................. 75

3.4: Reinforcement layout for panel sections ................................................................ 76

3.5: Description of specimen ID .................................................................................... 77

3.6: Casting bed ............................................................................................................. 78

3.7: Shear key detail ....................................................................................................... 79

3.8: Examples of completed panel sections ................................................................... 80

3.9: Specimen construction ............................................................................................ 81

3.10: Shear stud stress-strain relationship ........................................................................ 84

3.11: Panel-to-Girder test setup ....................................................................................... 86

3.12: Specimen in test setup ............................................................................................. 87

3.13: Load-slip response of Specimen 1-4000-6-4 .......................................................... 88

3.14: Measured shear stud strain (1-4000-6-4) ................................................................ 89

3.15: Specimen 1-4000-6-4 after bond failure ................................................................. 90

3.16: Panel-haunch bond failure (1-4000-6-k-4) ............................................................. 91

3.17: Load-slip response of Specimen 1-4000-6-k-4 ....................................................... 91

3.18: Cracking of girder section (1-4000-6-k-4) .............................................................. 92

3.19: Load-slip response of Specimen 1-4000-6-k-6 ....................................................... 93

3.20: Cracking of girder section (1-4000-6-k-6) .............................................................. 93

3.21: Load-slip response of Specimen 1-4000-8-6 .......................................................... 94

3.22: Panel rotation and cracking following bond failure (1-4000-8-6) .......................... 95

3.23: Load-slip response of Specimen 1-4000-8-k-6 ....................................................... 96

3.24: Cracking of Specimen 1-4000-8-k-6 after bond failure .......................................... 97

3.25: Cracking of Specimen 1-4000-8-k-6 ...................................................................... 97

3.26: Load-slip response of Specimen 1-8000-6-4 .......................................................... 98

3.27: Panel separation following bond failure (1-8000-6-4) ........................................... 99

xviii

Figure Page 3.28: Measured shear stud strain (1-8000-6-4) ................................................................ 99

3.29: Load-slip response of Specimen 1-8000-6-k-4 ..................................................... 100

3.30: Cracking of girder section and trough (1-8000-6-k-4) ......................................... 101

3.31: Damage to trough concrete of Specimen 1-8000-6-k-4 ........................................ 101

3.32: Load-slip response of Specimen 1-8000-6-6 ........................................................ 102

3.33: Separated panel section ......................................................................................... 103

3.34: Load-slip response of Specimen 1-8000-6-k-6 ..................................................... 104

3.35: Cracking following bond failure ........................................................................... 104

3.36: Measured shear stud strain (1-8000-6-k-6) ........................................................... 105

3.37: Damage to trough concrete of Specimen 1-80000-6-k-6 ...................................... 106

3.38: Load-slip response for Specimen 1-8000-6-k-4n ................................................. 107

3.39: Shear stud failure of Specimen 1-8000-6-k-4n ..................................................... 107

3.40: Measured shear stud strain (1-8000-6-k-4n) ......................................................... 108

3.41: Load-slip response of Specimen 2-4000-6-4 ........................................................ 109

3.42: Measured shear stud strain (2-4000-6-4) .............................................................. 109

3.43: Failed shear stud of Specimen 2-4000-6-4 ........................................................... 110

3.44: Load-slip response of Specimen 2-4000-6-6 ........................................................ 111

3.45: Rotation of panel section following second bond failure (2-4000-6-6) ................ 112

3.46: Pulling out of trough concrete from girder section (2-4000-6-6) ......................... 113

3.47: Measured shear stud strain (2-4000-6-6) .............................................................. 113

3.48: Load-slip response of Specimen 2-4000-6-k-4 ..................................................... 114

3.49: Failed shear stud of Specimen 2-4000-6-k-4 ........................................................ 115

3.50: Load-slip response of Specimen 2-4000-6-k-6 ..................................................... 116

3.51: Trough deterioration of Specimen 2-4000-6-k-6 .................................................. 116

3.52: Measured shear stud strain (2-4000-6-k-6) ........................................................... 117

3.53: Load-slip response for Specimen 2-4000-6-k-6n ................................................. 118

3.54: Failed shear stud of Specimen 2-4000-6-k-6n ...................................................... 118

3.55: Measured shear stud strain (2-4000-6-k-6n) ......................................................... 119

3.56: Load-slip response of Specimen 2-4000-8-6 ........................................................ 120

xix

Figure Page 3.57: Voids in haunch of Specimen 2-4000-8-6 ............................................................ 121

3.58: Trough fracture of Specimen 2-4000-8-6 ............................................................. 121

3.59: Load-slip response for Specimen 2-4000-8-k-6 ................................................... 122

3.60: Cracking of Specimen 2-4000-8-k-6 .................................................................... 123

3.61: Measured shear stud strain (2-4000-8-k-6) ........................................................... 123

3.62: Load-slip response of Specimen 2-8000-6-k-6n ................................................... 124

3.63: Failed shear stud of Specimen 2-8000-6-k-6n ...................................................... 125

3.64: Load-slip response of Specimen 2-8000-6-k-6 ..................................................... 126

3.65: Girder section cracking and haunch void (2-8000-6-k-6) .................................... 126

3.66: Trough and girder cracking of Specimen 2-8000-6-k-6 ....................................... 127

3.67: Load-slip response of Specimen 2-6000-14-4 ...................................................... 128

3.68: Failed shear stud of Specimen 2-6000-14-4 ......................................................... 128

3.69: Measured shear stud strain (2-6000-14-4) ............................................................ 129

3.70: Load-slip response of Specimen 2-6000-14-6 ...................................................... 130

3.71: Failed shear stud of Specimen 2-6000-14-6 ......................................................... 130

3.72: Incomplete interface bond failure of Specimen 1-4000-8-6 ................................. 133

3.73: Maximum load, after bond failure, on specimens with stud failure ..................... 135

3.74: Average shear strength of studs ............................................................................ 136

3.75: Embedment length comparison ............................................................................ 138

3.76: Trough concrete strength comparison ................................................................... 139

3.77: Trough detail comparison ..................................................................................... 140

3.78: Joint detail comparison ......................................................................................... 142

3.79: Loading and design for trough confinement reinforcement ................................. 145

3.80: Simplified design procedure ................................................................................. 147

3.81: Idealized breakout failure ..................................................................................... 148

3.82: Additional idealized failure modes ....................................................................... 149

3.83: Shear key area resisting stud force (2ft specimen) ............................................... 151

4.1: Specimen test setup ............................................................................................... 154

4.2: Specimen dimensions and reinforcement detail ................................................... 154

xx

Figure Page 4.3: Description of specimen ID .................................................................................. 155

4.4: Completed panel sections ..................................................................................... 157

4.5: Completed new joint specimens ........................................................................... 158

4.6: Forming joint of New England specimens ........................................................... 159

4.7: Concrete compressive strength gain ..................................................................... 160

4.8: Panel-to-Panel test setup ....................................................................................... 162

4.9: Example of specimen in test setup ........................................................................ 163

4.10: Cracking of specimen clamped at 8 in. ................................................................. 165

4.11: Failure of Specimen U-6-1 ................................................................................... 166

4.12: Failure of Specimen U-6-2 ................................................................................... 167

4.13: Failure of Specimen U-8-1 ................................................................................... 168

4.14: Failure of Specimen U-8-2 ................................................................................... 169

4.15: Failure of Specimen U-8-3 ................................................................................... 170

4.16: Failure of Specimen U-8-4 ................................................................................... 171

4.17: Failure of Specimen S-6-1 .................................................................................... 172

4.18: Failure of Specimen S-6-2 .................................................................................... 173

4.19: Failure of Specimen S-6-3 .................................................................................... 174

4.20: Failure of Specimen S-6-4 .................................................................................... 175

4.21: Failure of Specimen S-8-1 .................................................................................... 176

4.22: Failure of Specimen S-8-2 .................................................................................... 177

4.23: Failure of Specimen C-0-1 .................................................................................... 178

4.24: Failure of Specimen C-0-2 .................................................................................... 179

4.25: Failure of Specimen C-0-3 .................................................................................... 180

4.26: Average ultimate strength, comparing joint geometry ......................................... 182

4.27: Average ultimate strength, comparing joint material ........................................... 183

4.28: Maximum shear stress in a rectangular cross section ........................................... 184

4.29: Computing concrete shear stress ........................................................................... 184

5.1: Double headed shear studs .................................................................................... 189

5.2: Girder cross-section and reinforcement layout. .................................................... 190

xxi

Figure Page 5.3: Panel dimensions and reinforcement details ......................................................... 191

5.4: Images of girder construction ............................................................................... 193

5.5: Panel construction ................................................................................................. 195

5.6: Teflon for panel placement ................................................................................... 197

5.7: Hydraulic rams ...................................................................................................... 198

5.8: Panel installation process ...................................................................................... 199

5.9: Concrete compressive strength gain ..................................................................... 201

5.10: Shear stud stress-strain relationship ...................................................................... 202

5.11: Cyclic load test setup ............................................................................................ 204

5.12: Shear test setup ..................................................................................................... 205

5.13: Cyclic load specimen to Specimens G-1 and G-2 ................................................ 205

5.14: Roller and pin supports ......................................................................................... 206

5.15: Stud size and spacing for ultimate load test .......................................................... 207

5.16: Instrumentation for cyclic load test ...................................................................... 208

5.17: Instrumentation for shear test ............................................................................... 208

5.18: Static service wheel load-deflection response before cyclic loading ................... 212

5.19: Static service wheel load-deflection response after cyclic loading ...................... 212

5.20: Static ultimate wheel load-deflection response .................................................... 213

5.21: Load vs deflection – Specimen G-1 ...................................................................... 214

5.22: North horizontal slip – Specimen G-1 .................................................................. 215

5.23: South horizontal slip – Specimen G-1 .................................................................. 215

5.24: Measured strain in shear studs – Specimen G-1 ................................................... 216

5.25: Failure of Specimen G-1 ....................................................................................... 216

5.26: Load vs deflection - Specimen G-2 ...................................................................... 217

5.27: North horizontal slip - Specimen G-2 ................................................................... 218

5.28: South horizontal slip - Specimen G-2 ................................................................... 218

5.29: Measured strain in shear studs - Specimen G-2 .................................................... 219

5.30: Failure of Specimen G-2 ....................................................................................... 219

5.31: Girder static service load response comparison .................................................... 220

xxii

Figure Page 5.32: Panel static service load response comparison ..................................................... 221

5.33: Typical horizontal slip response ........................................................................... 221

5.34: Specimen G-1 compared with calculated load-deflection paths ........................... 224

5.35: North support (28 ft section of Specimen G-1) .................................................... 224

5.36: Adjusted response (Specimen G-1) ...................................................................... 225

5.37: Specimen G-2 compared with calculated load-deflection paths ........................... 227

5.38: Specimen G-1 compared with G-2 ....................................................................... 227

5.39: Adjusted response (Specimen G-2) ...................................................................... 228

5.40: Load location-Specimen G-2 ................................................................................ 228

5.41: Slip response of Specimens G-1 and G-2 ............................................................. 229

5.42: End slip of Specimens G-1 and G-2 ..................................................................... 230

A.1: Concrete compressive strength gain for Phase I deck panels ................................244 A.2: Concrete compressive strength gain for Phase I girders ........................................244 A.3: Concrete compressive strength gain for Phase I SCC ...........................................245 A.5: Internal strain gauge layout (Phase I specimens) ...................................................246 A.6: Concrete compressive strength gain for Group 1 panel sections ...........................247 A.7: Concrete compressive strength gain for Group 1 girder sections ..........................247 A.8: Concrete compressive strength gain for 4000 psi trough concrete ........................248 A.9: Concrete compressive strength gain for Group 1, 8000 psi trough concrete and girder section of Specimens 2-8000-6-k-6, 1-8000-6-k-4n, and 2-8000-6-k-6n ........................................................................248 A.10: Concrete compressive strength gain for panels of Specimens 2-8000-6-k-6, 1-8000-6-k-4n, and 2-8000-6-k-6n ................................................249 A.11: Concrete compressive strength gain for New England specimen SCC and Specimen 2-4000-6-k-6n ........................................................................249 A.12: Concrete compressive strength gain for Specimens 2-8000-6-k-6, 1-8000-6-k-4n, and 2-8000-6-k-6n ................................................250 A.13: Concrete compressive strength gain of trough concrete in Specimen 2-4000-6-k-6n .......................................................................................250

xxiii

ABSTRACT

Price, Stephen. Ph.D., Purdue University, May 2010. Innovative Connection Details for Full-Depth Precast Bridge Deck Panels for Use on Prestressed Concrete Girders. Major Professor: Robert J. Frosch.

This research evaluates the use of precast, prestressed bridge deck panels on new and existing precast, prestressed concrete girders. The evaluation focuses on the ease of construction and the ability of the system to develop composite action with the concrete girders. A system developed by the Connecticut Department of Transportation (CDOT) and Precast/Prestressed Concrete Institute New England Region (PCINER) was chosen for testing from available systems because it is representative of the current geometry of precast bridge deck panels. The CDOT system was evaluated in a series of large scale tests in which the panels were placed on a 40 ft prestressed concrete girder and subjected to three point loading. The CDOT system is compared to a new system developed as part of the research program. The new system addresses durability and ease of construction issues that are problematic with current joint details. The strength and geometry of both the current and new joint details are evaluated and compared in a series of direct shear tests. A final, large scale specimen was designed, constructed, and loaded to evaluate the new system. It was concluded that the behavior of the new system is comparable to that of the CDOT system. In addition, the new system is easy to construct and minimizes deck penetrations, thereby enhancing durability. This research has the potential to impact the way in which the aging highway system is rehabilitated and replaced by reducing the associated time and costs of construction while decreasing disruption to the traveling public.

1

CHAPTER 1: INTRODUCTION 1.1. Background The interest in full-depth, precast bridge deck panels has been steadily increasing over the past 50 years because they offer several benefits over traditional cast-in-place construction. This type of system eliminates the need for cast-in-place formwork and, as such, reduces cost, construction time, and environmental/economic impact. In addition, precast panels are constructed in a controlled environment which leads to a more durable, high quality product. There has been a considerable amount of research and experience with full-depth precast concrete deck panels installed on steel girders. The earliest use found in the literature was the replacement of two lanes of the Oakland-San Francisco Bridge in California with lightweight concrete deck panels in 1964 (Issa et al. 1995a). Since 1964, more than 15 states have used full-depth precast bridge deck panels in deck replacement projects and new construction (Issa et al. 1995b). The geometry of the panels and transverse joints varied between the reported projects. The panel-to-girder connection details also varied, consisting of welded studs, bolted studs, or deck tie downs (Issa et al. 1995b). There was no standard panel geometry or connections at the time. The development of full-depth, precast deck panel systems with standardized geometry and connection details began to take place in the 1980’s. A schematic of a typical precast panel system is shown in Figure 1.1. As illustrated, precast deck panels are typically constructed with the full design depth of the deck and span the full transverse width of the bridge. In the longitudinal direction, panels are typically 8 ft in length because of transportation limitations. The connection between adjacent panels is accomplished by the use of shear keys. For connection to the girder, block outs in the panels, referred to as shear stud pockets, are commonly provided.

2

Figure 1.1: Typical full-depth precast bridge deck panel system 1.2. Full-Depth Systems in Practice Several full-depth deck panel systems have been developed in the last three decades. The most notable of these systems include the following: 1.2.1. New England Region System The details of this non-proprietary system were developed by the Connecticut Department of Transportation (CDOT) (Versace 2003). Design guidelines based on those details were approved by the Precast/Prestressed Concrete Institute New England Region (PCINER) Technical Committee in 2002 (PCINER 2002). The panels have details similar to the ones shown in Figure 1.1. The thickness of the panels can vary depending on the application, but are typically 8 in. The connection to the supporting Shear Stud Blockout Girder Shear Stud Transverse Joint Girder Lines PLAN VIEW ELEVATION VIEW ELEVATION VIEW 8 ft Shear Key Grout Grout

3

structure is accomplished through square tapered pockets. This system does not require the use of prestressing of the deck panels. 1.2.2. NUDECK System This non-proprietary system was developed at the University of Nebraska (Badie et al. 1998). The system was originally a continuous partial depth system, but quickly evolved into a full-depth system (Versace 2003). The deck panels are typically 6 in. thick and use a female-to-female transverse joint similar to that shown in Figure 1.1. The connection to the supporting structure is accomplished through an 8 in. wide gap over the girder that runs the length of the panel. This system requires prestressing in the transverse directions because of the reduced thickness. A typical NUDECK panel is shown in Figure 1.2.

4

Figure 1.2: Typical NUDECK panel (Fallaha et al. 2004) 1.2.3. Inverset TM System This patented system was developed by Stanley Grossman in the early 1980’s (Versace 2003). The formwork for the deck is suspended from steel beams that are part of the composite superstructure. The steel beams become prestressed during casting due to the weight of the concrete in the formwork. When the deck system is righted, the concrete deck is prestressed by the steel beams. The system has been used on more than 145 bridges (Fort Miller Co. Inc. 2008a). A typical Inverset unit is shown in Figure 1.3. 8” wide gap

5

Figure 1.3: Typical Inverset TM unit (Fort Miller Co. 2008a) 1.2.4. Effideck TM System This proprietary system was developed in the late 1990’s by the Fort Miller Company (Versace 2003). The precast modular deck system consists of a 5 in. thick slab supported by hollow steel tubes, as shown in Figure 1.4. The system can be used non-composite or composite with the supporting structure. Composite action in achieved through the use of shear studs and grout pockets, similar to that presented in Figure 1.1, though pocket geometry may differ. The panel-to-panel connections are made by bolting a connector plate to adjacent steel tubes. The welding of shear studs and bolting of connections are performed from atop the deck, so there are full-depth openings throughout the deck. The openings are filled with non-shrink grout. The system has been used on bridges in New York, Vermont and Massachusetts (Fort Miller Co. Inc. 2008b).

6

Figure 1.4: Effideck TM system (Fort Miller Co. Inc. 2008b) 1.3. Research on Full-Depth Systems The use of full-depth, precast panel systems installed on steel girders has been widespread. However, the use of these systems with concrete girders has been very limited, and only a small number of research programs have evaluated the connection of precast deck panels to concrete girders. Relevant research regarding the connection of precast panels to one another and connection of the panels to both steel and concrete girders is highlighted. 1.3.1. University of Illinois at Chicago Issa et al. (1995a)

performed a survey of DOT's around the U.S. and Ontario, Canada to determine experience and use of full-depth precast bridge panels. The main problems reported in this survey were leaking, cracking, and deterioration of the joints, mainly caused by construction procedures. As a follow-up to the survey, Issa et al. (1995b)

conducted an investigation of the field performance of precast bridge deck panels in various states. The investigation consisted of field inspections of bridges in ten states and the District of Columbia and discussions with state engineers regarding the use of precast concrete bridge deck panels. From this investigation, it was concluded that inadequate performance is usually attributed to the poor connection between the panels and supporting system, adjacent joint configuration, lack of longitudinal post tensioning, construction procedures, and materials used. In addition, it was suggested that haunches

7

be provided to account for dimensional irregularities or volume change and that transverse prestressing be used for handling purposes. Finally, it was observed that fewer problems were encountered with bridge decks supported on concrete elements because they are generally stiffer. Issa et al. (1998) performed finite element modeling of both a simply supported and continuous bridge span. The purpose was to determine the amount of longitudinal post-tensioning required to keep the transverse joints of precast bridge deck panels in compression. The modeled simple span bridge was the Culpeper Bridge in VA, which spans 54.5 ft and is 30 ft wide. The modeled continuous span bridge was the Welland River Bridge, located near the city of Niagara Falls. Both modeled bridges had steel girders as the deck support structure. Based on the finite element models, it was determined that a minimum compressive stress in the deck of 200 psi is required for simply supported spans and 450 psi for the interior supports of continuous spans. The design recommendations have been used by the Illinois Department of Transportation in at least five bridge deck replacement projects.

Full document contains 280 pages
Abstract: This research evaluates the use of precast, prestressed bridge deck panels on new and existing precast, prestressed concrete girders. The evaluation focuses on the ease of construction and the ability of the system to develop composite action with the concrete girders. A system developed by the Connecticut Department of Transportation (CDOT) and Precast/Prestressed Concrete Institute New England Region (PCINER) was chosen for testing from available systems because it is representative of the current geometry of precast bridge deck panels. The CDOT system was evaluated in a series of large scale tests in which the panels were placed on a 40 ft prestressed concrete girder and subjected to three point loading. The CDOT system is compared to a new system developed as part of the research program. The new system addresses durability and ease of construction issues that are problematic with current joint details. The strength and geometry of both the current and new joint details are evaluated and compared in a series of direct shear tests. A final, large scale specimen was designed, constructed, and loaded to evaluate the new system. It was concluded that the behavior of the new system is comparable to that of the CDOT system. In addition, the new system is easy to construct and minimizes deck penetrations, thereby enhancing durability. This research has the potential to impact the way in which the aging highway system is rehabilitated and replaced by reducing the associated time and costs of construction while decreasing disruption to the traveling public.